Search results for "Concept drift"

showing 9 items of 9 documents

Prototype-based learning on concept-drifting data streams

2014

Data stream mining has gained growing attentions due to its wide emerging applications such as target marketing, email filtering and network intrusion detection. In this paper, we propose a prototype-based classification model for evolving data streams, called SyncStream, which dynamically models time-changing concepts and makes predictions in a local fashion. Instead of learning a single model on a sliding window or ensemble learning, SyncStream captures evolving concepts by dynamically maintaining a set of prototypes in a new data structure called the P-tree. The prototypes are obtained by error-driven representativeness learning and synchronization-inspired constrained clustering. To ide…

Data streamConcept driftbusiness.industryComputer scienceData stream miningConstrained clusteringcomputer.software_genreData structureMachine learningEnsemble learningSynchronization (computer science)Data miningArtificial intelligencebusinesscomputerProceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
researchProduct

Concept Drift Detection Using Online Histogram-Based Bayesian Classifiers

2016

In this paper, we present a novel algorithm that performs online histogram-based classification, i.e., specifically designed for the case when the data is dynamic and its distribution is non-stationary. Our method, called the Online Histogram-based Naïve Bayes Classifier (OHNBC) involves a statistical classifier based on the well-established Bayesian theory, but which makes some assumptions with respect to the independence of the attributes. Moreover, this classifier generates a prediction model using uni-dimensional histograms, whose segments or buckets are fixed in terms of their cardinalities but dynamic in terms of their widths. Additionally, our algorithm invokes the principles of info…

Concept driftComputer sciencebusiness.industryBayesian probabilityPattern recognition02 engineering and technologycomputer.software_genreInformation theoryNaive Bayes classifierComputingMethodologies_PATTERNRECOGNITION020204 information systemsHistogram0202 electrical engineering electronic engineering information engineeringsort020201 artificial intelligence & image processingData miningArtificial intelligencebusinesscomputerClassifier (UML)Statistical classifier
researchProduct

Node co-activations as a means of error detection : Towards fault-tolerant neural networks

2022

Context: Machine learning has proved an efficient tool, but the systems need tools to mitigate risks during runtime. One approach is fault tolerance: detecting and handling errors before they cause harm. Objective: This paper investigates whether rare co-activations – pairs of usually segregated nodes activating together – are indicative of problems in neural networks (NN). These could be used to detect concept drift and flagging untrustworthy predictions. Method: We trained four NNs. For each, we studied how often each pair of nodes activates together. In a separate test set, we counted how many rare co-activations occurred with each input, and grouped the inputs based on whether its class…

machine learningkoneoppiminenerror detectionvirheetfault toleranceneuroverkotneural networksconcept driftluotettavuusdependability
researchProduct

Online Estimation of Discrete Densities

2013

We address the problem of estimating a discrete joint density online, that is, the algorithm is only provided the current example and its current estimate. The proposed online estimator of discrete densities, EDDO (Estimation of Discrete Densities Online), uses classifier chains to model dependencies among features. Each classifier in the chain estimates the probability of one particular feature. Because a single chain may not provide a reliable estimate, we also consider ensembles of classifier chains and ensembles of weighted classifier chains. For all density estimators, we provide consistency proofs and propose algorithms to perform certain inference tasks. The empirical evaluation of t…

Concept driftStochastic processEstimation theoryBayesian probabilityEstimatorInferenceData miningClassifier chainscomputer.software_genreClassifier (UML)computerMathematics2013 IEEE 13th International Conference on Data Mining
researchProduct

Anomaly Detection for Reoccurring Concept Drift in Smart Environments

2022

Many crowdsensing applications today rely on learning algorithms applied to data streams to accurately classify information and events of interest in smart environments. Unfor-tunately, the statistical properties of the input data may change in unexpected ways. As a result, the definition of anomalous and normal data can vary over time and machine learning models may need to be re-trained incrementally. This problem is known as concept drift, and it has often been ignored by anomaly detection systems, resulting in significant performance degradation. In addition, the statistical distribution of past data often tends to repeat itself, and thus old learning models could be reused, avoiding co…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioniconcept drift online anomaly detection smart city unsupervised learning2022 18th International Conference on Mobility, Sensing and Networking (MSN)
researchProduct

Effectiveness of local feature selection in ensemble learning for prediction of antimicrobial resistance

2008

In the real world concepts are often not stable but change over time. A typical example of this in the biomedical context is antibiotic resistance, where pathogen sensitivity may change over time as pathogen strains develop resistance to antibiotics that were previously effective. This problem, known as concept drift (CD), complicates the task of learning a robust model. Different ensemble learning (EL) approaches (that instead of learning a single classifier try to learn and maintain a set of classifiers over time) have been shown to perform reasonably well in the presence of concept drift. In this paper we study how much local feature selection (FS) can improve ensemble performance for da…

Change over timeConcept driftbusiness.industryComputer sciencemedia_common.quotation_subjectSystem testingFeature selectionMachine learningcomputer.software_genreEnsemble learningStatistical classificationVotingArtificial intelligenceData miningbusinesscomputerClassifier (UML)media_common
researchProduct

DOBRO : a prediction error correcting robot under drifts

2016

We propose DOBRO, a light online learning module, which is equipped with a smart correction policy helping making decision to correct or not the given prediction depending on how likely the correction will lead to a better prediction performance. DOBRO is a standalone module requiring nothing more than a time series of prediction errors and it is flexible to be integrated into any black-box model to improve its performance under drifts. We performed evaluation in a real-world application with bus arrival time prediction problem. The obtained results show that DOBRO improved prediction performance significantly meanwhile it did not hurt the accuracy when drift does not happen.

ta113Concept driftComputer scienceMean squared prediction error02 engineering and technologyARIMAconcept drifton-line prediction error correction020204 information systems0202 electrical engineering electronic engineering information engineeringRobot020201 artificial intelligence & image processingAutoregressive integrated moving averageSimulation
researchProduct

Handling local concept drift with dynamic integration of classifiers : domain of antibiotic resistance in nosocomial infections

2006

In the real world concepts and data distributions are often not stable but change with time. This problem, known as concept drift, complicates the task of learning a model from data and requires special approaches, different from commonly used techniques, which treat arriving instances as equally important contributors to the target concept. Among the most popular and effective approaches to handle concept drift is ensemble learning, where a set of models built over different time periods is maintained and the best model is selected or the predictions of models are combined. In this paper we consider the use of an ensemble integration technique that helps to better handle concept drift at t…

Concept driftbusiness.industryComputer scienceWeighted votingcomputer.software_genreMachine learningEnsemble learningDomain (software engineering)Task (project management)Set (abstract data type)Artificial intelligenceData miningbusinesscomputer
researchProduct

Online mass flow prediction in CFB boilers with explicit detection of sudden concept drift

2010

Fuel feeding and inhomogeneity of fuel typically cause fluctuations in the circulating fluidized bed (CFB) process. If control systems fail to compensate the fluctuations, the whole plant will suffer from dynamics that is reinforced by the closed-loop controls. This phenomenon causes reducing efficiency and the lifetime of process components. In this paper we address the problem of online mass flow prediction, which is a part of control. Particularly, we consider the problem of learning an accurate predictor with explicit detection of abrupt concept drift and noise handling mechanisms. We emphasize the importance of having domain knowledge concerning the considered case and constructing the…

Ground truthConcept driftComputer scienceMass flowGeography Planning and DevelopmentBoiler (power generation)Control theoryControl systemGeneral Earth and Planetary SciencesDomain knowledgeFluidized bed combustionChange detectionSimulationWater Science and Technology
researchProduct